Epistasis Constrains Mutational Pathways of Hemoglobin Adaptation in High-Altitude Pikas
نویسندگان
چکیده
A fundamental question in evolutionary genetics concerns the roles of mutational pleiotropy and epistasis in shaping trajectories of protein evolution. This question can be addressed most directly by using site-directed mutagenesis to explore the mutational landscape of protein function in experimentally defined regions of sequence space. Here, we evaluate how pleiotropic trade-offs and epistatic interactions influence the accessibility of alternative mutational pathways during the adaptive evolution of hemoglobin (Hb) function in high-altitude pikas (Mammalia: Lagomorpha). By combining ancestral protein resurrection with a combinatorial protein-engineering approach, we examined the functional effects of sequential mutational steps in all possible pathways that produced an increased Hb-O2 affinity. These experiments revealed that the effects of mutations on Hb-O2 affinity are highly dependent on the temporal order in which they occur: Each of three β-chain substitutions produced a significant increase in Hb-O2 affinity on the ancestral genetic background, but two of these substitutions produced opposite effects when they occurred as later steps in the pathway. The experiments revealed pervasive epistasis for Hb-O2 affinity, but affinity-altering mutations produced no significant pleiotropic trade-offs. These results provide insights into the properties of adaptive substitutions in naturally evolved proteins and suggest that the accessibility of alternative mutational pathways may be more strongly constrained by sign epistasis for positively selected biochemical phenotypes than by antagonistic pleiotropy.
منابع مشابه
Long-term ventilatory adaptation and ventilatory response to hypoxia in plateau pika (Ochotona curzoniae): role of nNOS and dopamine.
We assessed ventilatory patterns and ventilatory responses to hypoxia (HVR) in high-altitude (HA) plateau pikas, repetitively exposed to hypoxic burrows, and control rats. We evaluated the role of neuronal nitric oxide synthase (nNOS) and dopamine by using S-methyl-l-thiocitrulline (SMTC) inhibitor and haloperidol antagonist, respectively. Ventilation (Vi) was measured using a whole body plethy...
متن کاملCardiac adaptation to high altitude in the plateau pika (Ochotona curzoniae)
The aim of this study was to assess maximal heart rate (HR) and heart morphological changes in high altitude living "plateau pikas" and rats bred at 2260 m. Rats and pikas were catheterized to measure HR (2260 m). After baseline measurements, 1 mg/kg of atropine (AT) and increasing doses of isoproterenol (IsoP) (0.1, 1, 10, and 100 μg kg) were injected into animals. Right (RV) and left ventricl...
متن کاملMutation-biased adaptation in Andean house wrens.
Genes, proteins, and genomes are pervasively shaped by biases in mutation that exert their influence by biasing rates of evolutionary change. Indeed, methods of phylogeny inference routinely assume that evolutionary rates will reflect transition–transversion bias and other common mutational biases. This influence is typically attributed to neutral evolution, presuming that mutation is a weak fo...
متن کاملBlunted hypoxic pulmonary vasoconstrictive response in the rodent Ochotona curzoniae (pika) at high altitude.
To investigate the possible mechanisms of adaptation to chronic hypoxia in the pulmonary circulation, we made direct measurements of pulmonary arterial pressure (Ppa) in 10 awake pika rodents that were transported to Xining, People's Republic of China (altitude 2,260 m) after being captured at 4,300 m and in 10 Wistar rats in a decompression chamber (simulated altitudes of 4,300 and 5,000 m) in...
متن کاملMetabolic enzyme activities across an altitudinal gradient: an examination of pikas (genus Ochotona).
Changes in metabolic enzyme activities were examined in three species of pikas that occur over a range of altitudes. Because these closely related mammals live in comparable ecosystems and face similar environmental factors regardless of altitude, modifications of metabolic machinery are probably due to differences in oxygen availability. Citrate synthase (CS), beta-hydroxyacyl CoA dehydrogenas...
متن کامل